Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\left[\mathrm{Cd}\left\{\mathrm{C}_{2}(\mathrm{COO})_{2}\right\}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, the first cadmium salt of acetylenedicarboxylic acid

Uwe Ruschewitz* and Ingo Pantenburg

Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany
Correspondence e-mail: uwe.ruschewitz@uni-koeln.de

Received 24 July 2002
Accepted 9 August 2002
Online 31 August 2002
In catena-poly[[[triaquacadmium(II)]- μ-acetylenedicarboxyl-ato- $\left.\kappa^{4} O, O^{\prime}: O^{\prime \prime}, O^{\prime \prime \prime}\right]$ hydrate $],\left\{\left[\mathrm{Cd}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the $\mathrm{Cd}^{\mathrm{II}}$ atom is coordinated by two bidentate carboxylate groups and three water molecules, thus forming a sevenfold coordination polyhedron with all atoms located on general sites. These polyhedra are connected by the bifunctional acetylenedicarboxylate ligands, forming zigzag chains running parallel to [120]. Hydrogen bonds, which involve the noncoordinated water molecule, connect these chains to form a three-dimensional framework.

Comment

During our studies of coordination polymers of the acetylenedicarboxylate dianion, $\mathrm{C}_{2}(\mathrm{COO})_{2}{ }^{2-}$ (Pantenburg \& Ruschewitz, 2002; Hohn et al., 2002), colourless crystals of the title compound, (I), were obtained, and its crystal structure is presented here.

(I)

The structure of (I) is composed of sevenfold coordination polyhedra at the $\mathrm{Cd}^{\mathrm{II}}$ ions, which are linked by the bifunctional acetylenedicarboxylate ligands to form zigzag chains. The coordination polyhedron around the $\mathrm{Cd}^{\mathrm{II}}$ ion is formed by two chelating bidentate carboxylate groups and three water molecules (Fig. 1). The $\mathrm{Cd}-\mathrm{O}$ distances range between 2.259 (2) and 2.664 (2) \AA (Table 1). As the latter $\mathrm{Cd}-\mathrm{O}$ distance ($\mathrm{Cd} 1-\mathrm{O} 221$) is longer than the next longest $[\mathrm{Cd} 1-$ $\mathrm{O} 122=2.487(2) \AA]$ by about $0.2 \AA$, the description of the Cd coordination as a $6+1$ polyhedron may be an appropriate alternative. The $\mathrm{Cd}-\mathrm{O}$ distances are similar to those found in
other cadmium(II) carboxylates, e.g. rhombohedral cadmium malonate dihydrate $[2.280$ (3)-2.543 (3) A, coordination number 7; Naumov et al., 2001].

The weakly coordinating nature of atom O 221 is associated with the shortest carboxylate $\mathrm{C}-\mathrm{O}$ distance $[\mathrm{C} 22-\mathrm{O} 221=$ 1.237 (3) \AA], indicative of more double-bond character for this $\mathrm{C}-\mathrm{O}$ bond and consistent with its slightly higher $U_{\text {eq }}$ value. The other C-O distances range from 1.247 (3) to 1.269 (3) \AA.

The $\mathrm{C}-\mathrm{C}$ distances in the two crystallographically distinct acetylenedicarboxylate dianions are as expected; $\mathrm{C} 11-\mathrm{C} 11^{\mathrm{i}}=$ 1.197 (5) \AA and $\mathrm{C} 21-\mathrm{C} 21^{\mathrm{ii}}=1.189$ (5) \AA for a $\mathrm{C} \equiv \mathrm{C}$ triple bond, and $\mathrm{C} 11-\mathrm{C} 12=1.461$ (3) \AA and $\mathrm{C} 21-\mathrm{C} 22=$ 1.468 (4) A for a C-C single bond [symmetry codes: (i) $2-x$, $1-y, 1-z$; (ii) $1-x,-1-y, 1-z]$. The dianions are almost linear $\left[\mathrm{C} 11^{\mathrm{i}}-\mathrm{C} 11-\mathrm{C} 12=177.7(3)^{\circ}\right.$ and $\mathrm{C} 21^{\mathrm{ii}}-\mathrm{C} 21-\mathrm{C} 22=$ $177.6(3)^{\circ}$] and the carboxylate groups of one anion are almost coplanar. The torsion angles in the two anions are in the ranges $0.0(2)-1.6(3)$ and $0.0(2)-1.1$ (3) ${ }^{\circ}$.

The Cd polyhedra are linked by the bifunctional carboxylates to form zigzag chains running parallel to [120] (Fig. 2).

Figure 1
A view of (I), showing the atomic numbering scheme of the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level and H -atom radii are arbitrary.

Figure 2
The crystal structure of (I), viewed along the a axis. Two polymeric zigzag chains connected by hydrogen bonds, which involve the non-coordinated O6 water molecule, are shown. H atoms have been omitted for clarity.

The deviation from linearity is defined by the $\mathrm{C} 12-\mathrm{Cd} 1-\mathrm{C} 22$ angle, which is $131.09(7)^{\circ}$. In $\left[\mathrm{Co}\left\{\mathrm{C}_{2}(\mathrm{COO})_{2}\right\}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Pantenburg \& Ruschewitz, 2002), the only other known example of a coordination polymer of acetylenedicarboxylate crystallizing in a chain structure, the $\mathrm{Co}^{\mathrm{II}}$ ion is coordinated octahedrally by two monodentate carboxylate groups in trans positions and four water molecules. Thus, a linear polymeric chain structure is formed.

In both $\left[\mathrm{Co}\left\{\mathrm{C}_{2}(\mathrm{COO})_{2}\right\}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and (I), these chains are connected by hydrogen bonds, which involve additional water molecules [atom O 6 in (I)]. In (I), the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds vary between 2.671 (4) \AA (O121‥O5) and 2.770 (4) \AA (O3 . . O6), connecting the zigzag chains to form a three-dimensional network.

Experimental

$\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(1.33 \mathrm{~g}, 5 \mathrm{mmol})$ was dissolved in deionized water $(10 \mathrm{ml})$. A solution of acetylenedicarboxylic acid $(0.57 \mathrm{~g}$, $5 \mathrm{mmol})$ in deionized water (10 ml) was added; the resulting solution had a pH of 2. Immediately, a colourless precipitate formed, which was filtered off after 2 h at 278 K . The resulting colourless crystals of (I) decomposed slowly in air, forming a brown solid, but in a sealed capillary during the X-ray analysis no decomposition of the single crystal was observed. In a vacuum, a yellow solid was obtained, which was amorphous to X-rays.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=296.50$
Monoclinic, $P 2_{\mathrm{a}_{1}} / n$
$a=6.8195$ (7) \AA
$b=7.953$ (1) \AA
$c=16.387(2) \AA$
$\beta=99.811(8)^{\circ}$
$V=875.74(17) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=2.249 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 19461 \\
& \quad \text { reflections } \\
& \theta=1.5-32.4^{\circ} \\
& \mu=2.51 \mathrm{~mm}^{-1} \\
& T=170(2) \mathrm{K} \\
& \text { Column, colourless } \\
& 0.54 \times 0.14 \times 0.13 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS II diffractometer
Oscillation scans
Absorption correction: numerical
(X-RED; Stoe \& Cie, 2001)
$T_{\text {min }}=0.242, T_{\text {max }}=0.785$
16485 measured reflections
1912 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.048$
$S=1.08$
1912 reflections
151 parameters
All H -atom parameters refined

1545 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=27^{\circ}$
$h=-8 \rightarrow 8$
$k=-10 \rightarrow 10$
$l=-20 \rightarrow 20$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0225 P)^{2}\right. \\
& +0.4864 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.40 \mathrm{e}_{\AA^{-3}} \\
& \begin{array}{l}
\Delta \rho_{\text {max }}=0.40 \mathrm{e}^{\mathrm{m}} \AA^{-3}
\end{array} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0049 \text { (4) }
\end{aligned}
$$

The absorption correction was performed after optimizing the crystal shape using X-SHAPE (Stoe \& Cie, 1999). The H atoms were identified in difference Fourier syntheses and refined freely.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: X - $A R E A$; program(s) used to solve

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Cd1-O222	$2.259(2)$	C11-C12	$1.461(3)$
Cd1-O3	$2.272(2)$	C12-O122	$1.247(3)$
Cd1-O5	$2.276(2)$	C12-O121	$1.262(3)$
Cd1-O4	$2.298(2)$	C21-C21ii	$1.189(5)$
Cd1-O121	$2.352(2)$	C21-C22	$1.468(4)$
Cd1-O122	$2.487(2)$	C22-O221	$1.237(3)$
Cd1-O221	$2.664(2)$	C22-O222	$1.269(3)$
C11-C11	$1.197(5)$		
O121-Cd1-O122	$54.07(6)$	O3-Cd1-O4	$169.15(7)$
O221-Cd1-O222	$52.42(6)$	O3-Cd1-O121	$90.57(8)$
O221-Cd1-O4	$82.28(7)$	O3-Cd1-O122	$90.73(7)$
O221-Cd1-O122	$130.17(6)$	O4-Cd1-O121	$97.43(7)$
O221-Cd1-O121	$175.75(6)$	O4-Cd1-O122	$99.89(7)$
O221-Cd1-O3	$89.19(7)$	O5-Cd1-O4	$91.19(8)$
O221-Cd1-O5	$84.92(7)$	O5-Cd1-O121	$90.85(7)$
O222-Cd1-O3	$92.29(8)$	O5-Cd1-O122	$144.11(7)$
O222-Cd1-O5	$137.07(7)$	C11 1 -C11-C12	$177.7(4)$
O222-Cd1-O4	$87.83(8)$	O122-C12-O121	$122.7(2)$
O222-Cd1-O121	$131.83(6)$	C21i-C21-C22	$177.6(4)$
O222-Cd1-O122	$77.81(6)$	O221-C22-O222	$123.1(2)$
O3-Cd1-O5	$81.34(8)$		

Symmetry codes: (i) $2-x, 1-y, 1-z$; (ii) $1-x,-1-y, 1-z$.

Table 2
Hydrogen-bonding geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 31 \cdots \mathrm{O}^{\text {i }}$	0.75 (4)	2.03 (4)	2.770 (3)	175 (4)
$\mathrm{O} 3-\mathrm{H} 32 \cdots \mathrm{O} 222^{\text {ii }}$	0.72 (4)	1.99 (4)	2.711 (3)	173 (4)
$\mathrm{O} 4-\mathrm{H} 41 \cdots \mathrm{O} 122^{\text {iii }}$	0.78 (4)	1.96 (4)	2.722 (3)	165 (3)
O4-H42 . ${ }^{\text {O6 }}$	0.77 (5)	1.95 (5)	2.713 (3)	167 (5)
$\mathrm{O} 5-\mathrm{H} 51 \cdots \mathrm{O} 4^{\text {i }}$	0.78 (4)	2.12 (5)	2.892 (3)	169 (4)
O5-H52 \cdots O121 ${ }^{\text {iv }}$	0.86 (4)	1.82 (4)	2.670 (3)	169 (3)
$\mathrm{O} 6-\mathrm{H} 61 \cdots \mathrm{O} 221^{\text {i }}$	0.91 (4)	1.83 (4)	2.732 (3)	175 (4)
O6-H62 ${ }^{\text {O }} \mathrm{O}^{\text {v}}$	0.73 (5)	2.33 (5)	3.009 (3)	156 (5)
O6-H62 . $\mathrm{O}^{\text {3 }}$	0.73 (5)	2.62 (5)	3.129 (3)	129 (4)

Symmetry codes: (i) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $1-x,-y, 1-z$; (iii) $2-x,-y, 1-z$; (iv) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (v) $1+x, y, z$.
structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1517). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Brandenburg, K. (2001). DIAMOND. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
Hohn, F., Pantenburg, I. \& Ruschewitz, U. (2002). Chem. Eur. J. In the press.
Naumov, P., Ristova, M., Sǒptrajonov, B., Kim, M.-J., Lee, H.-J. \& Ng, S. W. (2001). Acta Cryst. E57, m14-m16.

Pantenburg, I. \& Ruschewitz, U. (2002). Z. Anorg. Allg. Chem. 628, 1697-1702.
Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.
Stoe \& Cie (1999). X-SHAPE. Version 1.06. Stoe \& Cie, Darmstadt, Germany. Stoe \& Cie (2001). X-AREA (MainMenu Version 1.15) and X-RED (Version 1.22). Stoe \& Cie, Darmstadt, Germany.

